# Diels-Alder Reactions of Amino Acid-Derived Trienes 

William V. Murray,* Sengen Sun, Ignatius J. Turchi, Frank K. Brown, and A. Diane Gauthier

The R. W. J ohnson Pharmaceutical Research Institute, 1000 Route 202, Raritan, New J ersey 08869
Received March 12, 1999


#### Abstract

Triene precursors ( $\mathbf{1 a}-\mathbf{e}, \mathbf{2 a}-\mathbf{k}$ ) were constructed for substrate-control led asymmetric Diels-Alder reactions. Boc-L-phenylalanal and Boc-L-valinal were condensed with triethyl phosphonoacetate or 2-phosphonopropionate to generate the $\alpha, \beta$-unsaturated esters as dienophiles. Removal of the Boc group to give free amines $\mathbf{4 a - d}$, which after, or without N -benzylation, were treated with 3,5-hexadienoyl chloride to give $\mathbf{l a} \mathbf{- e}$, or with 2,4-hexadienoyl chloride to afford $\mathbf{2 a - f}$. The trienes $\mathbf{2 g}$-i were prepared via reductive alkylation of amines $\mathbf{4 a}$ - $\mathbf{i}$ with 2,4 -hexadienal. The secondary amide triene la failed to yield any Diels-Alder product when heated at $170^{\circ} \mathrm{C}$. The tertiary amide trienes $\mathbf{1 b}$ - e produced in refluxing toluene the major cycloaddition products that were cis-fused and derived from the exo transition states. Trienes $\mathbf{2 a - k}$ underwent surprisingly facile DielsAlder reactions to produce the major trans-fused isomers that were derived from the endo transition states. For trienes $\mathbf{2 b} \mathbf{-} \mathbf{h}$ and $\mathbf{2 j}, \mathbf{k}$, Diels-Alder reactions proceeded at room temperature. For the primary amide 2a, the Diels-Alder reaction proceeded smoothly in refluxing toluene. The tertiary amide triene $\mathbf{2 2}$ was constructed to have two electron-withdrawing ester substituents at the termini of the triene. The Diels-Alder reaction of $\mathbf{2 2}$ took place spontaneously at room temperature upon benzoylation of the secondary amine $\mathbf{2 1}$ and produced a single isomer derived from the endo transition state. 1,3-Allylic strain is discussed as an important factor in control of the diastereoselectivity.


## Introduction

The Diels-Alder reaction is a powerful method for synthesis of many categories of cyclic compounds and possesses considerable potential in synthesis of heterocyclic libraries for drug screening. There have several reports on trienes containing a nitrogen atom within the triene tether. ${ }^{1}$ Our goal was to develop an efficient method, based on the intramolecular Diels-Alder reaction of novel amino acid derived trienes, for fast, mild, and selective generation of large number of heterocyclic compounds.
The trienes ( $\mathbf{l a}-\mathbf{e}, \mathbf{2 a}-\mathbf{k}$, Figures 1 and 2 ) have been designed so that a stereogenic center at the allylic position of the dienophile can provide steric discrimination of the diastereotopic faces of the dienophile. ${ }^{2}$ The terminal ethyl ester group may facilitate the cycloaddition process compared with similar published amino acid derived trienes. ${ }^{1}$ We report here our surprising observations of the facile intramolecular cycloadditions and our investigation of substituent effects on the reactivity and stereoselectivity.

[^0]

Figure 1.


2a. $R_{1}=B n, R_{2}=M e, R_{3}=H, X=O$
2b. $R_{1}=B n, R_{2}=H, R_{3}=B n, X=O$
2c. $R_{1}=B n, R_{2}=M e, R_{3}=B n, X=O$
2d. $\mathrm{R}_{1}=\mathrm{Me}_{2} \mathrm{CH}, \mathrm{R}_{2}=\mathrm{H}$,
$\mathrm{R}_{3}=2,4-(\mathrm{MeO})_{2} \mathrm{Bn}, \mathrm{X}=\mathrm{O}$
2e. $\mathrm{R}_{1}=\mathrm{Me}_{2} \mathrm{CH}, \mathrm{R}_{2}=\mathrm{Me}$, $\mathrm{R}_{3}=2,4-(\mathrm{MeO})_{2} \mathrm{Bn}, \mathrm{X}=\mathrm{O}$
2f. $R_{1}=M e_{2} C H, R_{2}=M e, R_{3}=B n, X=O$
2g. $R_{1}=B n, R_{2}=H, R_{3}=H, X=2 H$
2h. $R_{1}=M e_{2} C H, R_{2}=\mathrm{Me}, R_{3}=B n, X=2 H$
2i. $R_{1}=M e_{2} \mathrm{CH}, R_{2}=\mathrm{Me}, R_{3}=\mathrm{H}, X=2 \mathrm{H}$
2j. $R_{1}=M e_{2} C H, R_{2}=M e, R_{3}=B z, X=2 H$
2k. $R_{1}=H, R_{2}=H, R_{3}=B n, X=O$
Figure 2.

## Results and Discussion

Synthesis of the triene precursors shown in Scheme 1 involves Horner-Wadsworth-Emmons condensation of Boc-L-valinal ${ }^{3}$ and Boc-L-phenylalanal ${ }^{3}$ with triethyl phosphonoacetate or phosphonopropionate in the pres-

## Scheme $1^{\text {a }}$


a Key: (a) (EtO) ${ }_{2} \mathrm{P}(\mathrm{O})=\mathrm{CR}_{2} \mathrm{COOEt}$, THF; (b) $20 \%$ TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ or $2,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHO}, \mathrm{AcOH}, \mathrm{NaCNBH}_{3}$; (d) ( $\mathrm{E}, \mathrm{E}$ )-2,4- or ( E )-3,5-hexadienoyl chloride, 1.5 equiv, $E t_{3} \mathrm{~N}, \mathrm{THF}$; (e) (E,E)-2,4-hexadienal, $\mathrm{AcOH}, \mathrm{NaBH}(\mathrm{OAc})_{3}$; (f) $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$, THF.

## Scheme 2a



$$
\text { a } \mathrm{E}=\text { COOEt. }
$$

ence of a base. Removal of the Boc protecting group afforded amine derivatives $\mathbf{4 a}-\mathbf{d}$, which were acylated using 2,4- or 3,5-hexadienoyl chlorideto give 1a and 2a. 4a-d were alternatively benzylated by reductive alkylation to give $\mathbf{4 e}$-i before installation of the dienes by acylation to generate $\mathbf{1 b}-\mathbf{e}$ and $\mathbf{2 b}-\mathbf{f}$. Compounds $\mathbf{4 a}$, 4d (TFA salts), and 4i were treated with 2,4-hexadienal and a boron hydride in the presence of acetic acid to produce amine-linked trienes ( $\mathbf{2 g}-\mathbf{i}$ ). Triene $\mathbf{2 i}$ was benzoylated to afford the amide triene $\mathbf{2 j}$.

Triene la containing an amide NH group did not produce any cycloaddition products after reflux in toluene for 48 h and decomposed completely under $\mathrm{N}_{2}$ after reflux for 24 h in 1,3-dichlorobenzene. Triene precursor 1b containing an N-benzyl group was converted to DielsAlder products in excellent yield after reflux in toluene for 16 h . All four possible isomers were observed in a ratio of 33:11:10:3 as shown in Scheme 2 and Table 1. The calculated activation energies for the Diels-Alder reactions of the trienes $\mathbf{1}$ to the cycloadducts 5-8 are presented in the Supporting Information. ${ }^{4}$ These values are obtained by taking the difference in energy between an extended, low energy conformer of $\mathbf{1}$ and the corresponding transition structure leading to the products 5-8. This treatment is not sufficient to explain the lack
(3) Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676.
(4) Supporting Information Table 2.

Table 1. Product Ratios Were Obtained by ${ }^{1} \mathrm{H}$ NMR Integration of the Crude Reaction Mixtures, or Based on Isolated Yields of the Isomers. Trienes $\mathbf{2 b} \mathbf{-} \mathbf{g}$ and $\mathbf{2 j}$ Were Not Characterized Due to the Ongoing Diels-Alder Reactions, and the Yields for These Reactions Are for Two Steps

|  | solvents/temperature | reaction time | yield \% | $\begin{aligned} & \text { 5:6:7:8 or } \\ & 9: 10: 11: 12 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1a | $170{ }^{\circ} \mathrm{C}$ | 24 h | 0 |  |
| 1b | toluene, reflux | 16 h | 94 | 33:10:11:3 |
| 1c | toluene, reflux | 50 h | 85 | 3:1:0:0 |
| 1d | toluene, reflux | 16 h | 74 | 3:1:0:0 |
| 1e | toluene, reflux | 6 days | 66 | 5:2:0:0 |
| 2a | toluene, reflux | 7 h | 93 | 34:11:1:0 |
| 2b | $\mathrm{CHCl}_{3}$, rt | 12 h | 82 | 10:1:10:1 |
| 2c | $\mathrm{CHCl}_{3}$, rt | 20 h | 73 | 83:25:1:1 |
| 2d | $\mathrm{CHCl}_{3}$, rt | 60 h | 91 | 20:2:1:0 |
| 2 e | $\mathrm{CHCl}_{3}, \mathrm{rt}$ | 80 h | 80 | 185:50:1:0 |
| 2 f | $\mathrm{CHCl}_{3}$, rt | 72 h | - | 6:1:0:0 |
| 2g | $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$, rt | <6 h | > 66 | 5:1:0:0 |
| 2h | $\mathrm{CHCl}_{3}, \mathrm{rt}$ | 15 days | 84 | 3:2:0:0 |
| 2j | $\mathrm{CHCl}_{3}$, rt | 18 h | 61 | 9:1:0:0 |
| 2k | $\mathrm{CHCl}_{3}$, rt | 18 days | 67 | 6:1:-:- |

of reactivity of $\mathbf{1 a}$. The lack of reactivity of the triene $\mathbf{1 a}$ may be rationalized by the following computational results. The energy of an extended, low energy conformer of $\mathbf{1}\left(R_{1}=M e, R_{2}=R_{3}=H\right)$ is cal culated to be $4.6 \mathrm{kcal} /$ mol (B3LYP/6-31G(d)//RHF/3-21G) lower than a folded (i.e., reactive) conformer. This folded, reactive conformer is a local minimum that would lead to the product $5\left(R_{1}\right.$ $=M e, R_{2}=R_{3}=H$ ). Because of this Iarge energy difference between these conformers, compound $\mathbf{1}$ cannot reach a large enough concentration of the reactive conformer at equilibrium, and consequently, no DielsAlder reaction is observed. In contrast, introduction of an NMe substituent as in $\mathbf{1}\left(R_{1}=M e, R_{2}=H, R_{3}=M e\right)$ leads to a difference of only $2.5 \mathrm{kcal} / \mathrm{mol}$ at the same level of theory between the extended and the fol ded, reactive conformers. In this case, the concentration of the reactive conformer is high enough at equilibrium for reaction to occur. ${ }^{5}$
For compounds $\mathbf{1 c}, \mathbf{d}$, only two diastereomers were present in the crude reaction mixture as seen by ${ }^{1} \mathrm{H}$ NMR and were isolated by silica gel column chromatography (Scheme 2, Table 1). The calculated relative activation energies for the reaction of 1 leading to products 5-8 at the B3LYP/6-31G(d)//RHF/3-21G level of theory adequately rationalize the observed product distributions assuming similar entropies of activation. In both cases the exo/equatorial transition structure is calculated to be the lowest energy with the endo/equatorial transition structure the next lowest as observed experimentally.

The bond lengths of the forming bonds for the transition structures leading to the products 5-8 are given. ${ }^{6}$ The formation of the new bonds is asynchronous with the C1-C2 (lactam ring) bond being shorter than the C3C4 (cyclohexene ring) bond by 0.092 Å (AM1) and 0.267 $\AA$ (RHF/3-21G) on average.

It has been reported that cis-fused hydroisoquinolone derivatives are generally the major isomers in cycloadditions of 7 -aza-1,3,9-decatrienes. ${ }^{1}$ M artin et al. reported a case that the isomeric cycloaddition products can be interconverted at the reaction temperature. ${ }^{1 c}$ Our trienes

[^1]
5. Exo / equatorial
6. Endo / equatorial

7. Endo / axial

8. Exo / axial

Figure 3.

## Scheme $3^{a}$



${ }^{\mathrm{a}} \mathrm{E}=$ COOEt.
1b-d also gave the major cis-fused products 5, but derived from the exo transition state (Figure 3). The purified isomers from the cyclizations of trienes 1c-e were not able to be interconverted when reheated at the reaction temperature, suggesting a kinetically controlled mechanism. This observation is surprising as kinetically controlled Diels-Alder reactions usually produce major isomers derived from endo transition states. ${ }^{7}$ All of the Diels-Alder reactions described herein are calculated to be exothermic by $9-44 \mathrm{kcal} / \mathrm{mol}$ depending on the level of theory. ${ }^{8}$ This is consistent with the experimental observations.

This exo selectivity may be a result of the overall conformation that can afford a reaction path of relatively low energy. The sterically more hindered isopropyl group $R_{1}$, or the size increase of $R_{2}$ from proton to methyl, may further destabilize the transition states $(\mathbf{7}, \mathbf{8})$ where the $\mathrm{R}_{1}$ group is axial (Figure 3). Overall, the exo transition state with the equatorial $R_{1}(5)$ is favored.

Compound $\mathbf{2 b}$ could not be synthesized in pure form by acylating $\mathbf{4 e}$ with 2,4-hexadienoyl chloride at room temperature due to the facile Diels-Alder cycloaddition that occurred at room temperature. We chose not to isolate the intermediate $\mathbf{2 b}$, and the crude product $\mathbf{2 b}$ in ether was washed with sodium carbonate and water and was then allowed to stand in $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature. The cycloaddition of $\mathbf{2 b}$ was found to be complete in 12 h (Scheme 3, Table 1). The Diels-Alder cycloaddition reactions of $\mathbf{2 c} \mathbf{- f}$ also proceeded at room temperature and produced two prominent diastereomers in each case. ${ }^{1} \mathrm{H}$ NMR showed endo/exo ratios of from 3:1 to 6:1. The Diels-Alder reaction of $\mathbf{2 a}$ containing a free NH group was sluggish at room temperature. When

[^2]5,6-Fused transition states corresponding to 2a-f

9. Endo / equatorial

10. Exo / equatorial

11. Endo / axial

12. Exo /axial

Figure 4.
refluxed in toluene, however, the reaction was complete in 6 h , affording endo selectivity of $\sim 3: 1$ and facial selectivity of 34:1. The facial selectivity across the dienophile in these cases appears to be due to the pronounced interaction between the axial $\mathrm{R}_{1}$ group and the $\mathrm{R}_{2}$ methyl group in transition state $\mathbf{1 1}$ (Figure 4).
When the TFA salt of $\mathbf{4 a}\left(\mathrm{R}_{1}=\mathrm{Bn}, \mathrm{R}_{2}=\mathrm{H}\right)$ was subjected to reductive alkylation conditions with 2,4hexadienal, triene $\mathbf{2 g}$ was not detected. Instead, the isomeric cycloaddition products $\mathbf{9 g}$ and $\mathbf{1 0 g}$ were isolated in a 5:1 ratio. Under the same reaction conditions, pure amine triene 2i was isolated in a $73 \%$ yield from the TFA salt of 4d and underwent the cycloaddition very slowly ( $10 \%$ conversion in 10 days in $\mathrm{CDCl}_{3}$ ). The Diels-Alder reaction of $\mathbf{2 j}$ was complete in 18 h after the addition of benzoyl chloride to a THF solution of $\mathbf{2 i}$ containing excess triethylamine. Amine triene $\mathbf{2 h}$ was purified in a 54\% yield from a reaction of $\mathbf{4 i}$. The cycloaddition of $\mathbf{2 h}$ was complete in 15 days (Scheme 3, Table 1). It is apparent in each of these cases that either the interaction between R1 and R3 in the transition state or the planarization of the amine nitrogen to its requisite amide has a profound effect on the rate of the Diels-Alder cycloaddition.
Triene $\mathbf{2 k}$ was prepared by alkylation of benzylamine with 4-bromo-trans-crotonic ethyl ester, followed by Nacylation with 2,4-hexadienoyl chloride. Cycloaddition of $\mathbf{2 k}$ took 18 days to complete in either $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$. This result indi cated the interaction between $R_{1}$ and $R_{3}$ was a key factor to the rate acceleration.

The cal culated activation energies for the Diels-Alder reactions of the trienes $\mathbf{2}$ to the cycloadducts $\mathbf{9 - 1 2}$ are given. ${ }^{9}$ These values are $3-6 \mathrm{kcal} / \mathrm{mol}$ lower for the amides than for the amines with the exception of the amides where the nitrogen substituted with a hydrogen (i.e., 2: $R_{1}=R_{2}=M e, R_{3}=H$ and $R_{1}={ }^{i} \operatorname{Pr}, R_{2}=M e, R_{3}$ $=\mathrm{H})$ at the B3LYP/6-31G(d)//RHF/3-21G level. Also, the amide $\mathbf{2}\left(\mathrm{R}_{1}={ }^{i} \mathrm{Pr}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Ac}\right.$ ) has an activation energy for the cycloaddition to $9-12$ of about $2 \mathrm{kcal} / \mathrm{mol}$ lower than the amines at the same level of theory. The calculated values agree at least qualitatively with the observed relative rates for the cycloadditions of 2to 9-12. Frontier MO theory is inadequate for rationalizing the relative rates of the Diels-Alder reactions of the amides vs the amines since the energy gaps for the frontier orbitals are nearly equal in each case. Thus, subtle steric effects in the transition structures are probably responsible for these rate effects. ${ }^{6}$
As was the case for the Diels-Alder reactions of 1, the calculated relative activation energies for the reaction of

[^3]
## Scheme $4^{\text {a }}$


a Key: (a) (E)-(EtO) ${ }_{2} \mathrm{P}(\mathrm{O})=\mathrm{CHCH}=\mathrm{CHCOOEt}, \mathrm{THF}$; (b) 20\% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}, \mathrm{AcOH}, \mathrm{NaCNBH}_{3}$; (d) (E)-crotonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, THF; (e) toluene, reflux, $4 \mathrm{~h}, 100 \%, 17: 18: 19: 20=$ 10:10:1:1.

2 leading to cycloadducts $\mathbf{9 - 1 2}$ at the B3LYP/6-31G(d)// RHF/3-21G level of theory give a good account of the observed product distributions. In general, the transition structures leading to the endo trans-fused isomers are calculated to be the lowest energy species. Lower levels of theory usually give less satisfactory results.

Amide triene $\mathbf{1 6}$ containing an ester-substituted diene was synthesized (Scheme 4). The H orner-WadsworthEmmons reaction between valinal and triethyl trans-4phosphonocrotonate gave an inseparable mixture of the major trans,trans-diene $\mathbf{1 3}$ and a minor cis,trans-diene isomer (10:1). The mixture was converted to triene 16 in a pure form. The cycloaddition of $\mathbf{1 6}$ was sluggish at room temperature ( $\sim 10 \%$ conversion in 1 week) and was carried out at reflux in toluene for 4 h to afford four isomers 17, 18, 19, and 20 in a ratio of 10:10:1:1.

It is notable that we are adding an electron-deficient diene and an electron-deficient dienophile for $\mathbf{2 a}-\mathbf{f}$ to form the 5,6-fused bicycloadducts. Our initial hypotheses for these facile Diels-Alder reactions invol ved the complementary dipole interaction between the diene and the dienophile in an intramolecular fasion. The similar intermolecular reaction between 2,4-dienoylate and acrylate was apparently disfavored for the regio orientation of the favorable dipole interaction, relative to the regio orientation of apparent dipole repulsion. ${ }^{11}$ We believed that matching the presumed negative carbon $\alpha$ to the carbonyl group in the diene to the positive carbon $\beta$ to the carbonyl in the dienophile, as well as the positive carbon $\delta$ to the carbonyl in the diene with the negative carbon $\alpha$ to the carbonyl in the dienophile, we could achieve reasonable orbital overlap, and this could explain the facile nature of the observed Diels-Alder reactions. To test this hypothesis, the diester triene 21 was synthesized (Scheme 5). This compound proved unreactive at room temperature until it was N -benzoylated. Its cycloaddition was initiated upon the benzoylation as

[^4]Scheme $5^{a}$

a Key: (a) (E)-BrCH ${ }_{2} \mathrm{CHCHCOOEt}, \mathrm{DMAP}, \mathrm{THF}, 40 \mathrm{~h}, 52 \% ;$ (b) $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 0.5 \mathrm{~h}$; (c) $\mathrm{rt}, \mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}, 40 \mathrm{~h}, 92 \%$ (based on 21), one isomer only.
detected by ${ }^{1} \mathrm{H}$ NMR and was complete in 40 h in either $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$. A single diastereomer 23 was observed and purified in $92 \%$ yield as the cycloaddition product. This system eliminates the complimentary polarization that could be in effect in the other examples and demonstrates the requirement for a large group at $\mathrm{R}_{3}$ as well as a planar nitrogen.

F or the Diels-Alder reactions of $\mathbf{1 6}$ to 17-20 and $\mathbf{2 2}$ to $\mathbf{2 3}$ we were unable to locate transition structures at the RHF/3-21G level of theory using standard or newer techniques such as quadratic synchronous transit methods. Transition structures were located using the AM1 Hamiltonian and single-point calculations using the hybrid HF-DFT method, B3LYP/6-31G(d) were carried out on these two systems. The activation energy for the conversion of $\mathbf{1 6}$ to $\mathbf{1 7 - 2 0}$ is about $10-13 \mathrm{kcal} / \mathrm{mol}$ higher than for the cycloaddition of $\mathbf{2 2}$ to $\mathbf{2 3}$. This is in qualitative agreement with the experimental findings that the triene $\mathbf{2 2}$ undergoes cycloaddition much more rapidly than triene 16. This result can be rationalized based on FMO theory. ${ }^{6,10}$ F or 16 the interacting orbitals are the HOMO - 1 localized on the diene and the LUMO + 1 localized on the olefinic double bond. The energy gap between these orbitals is 10.1 eV (AM1). F or 22, however, the interacting orbitals are the HOMO localized on the diene and the LUMO + 1 localized on the olefin. In this case the gap is only 9.1 eV (AM 1). Other factors such as steric and electrostatic interactions may contribute to the relative reactivity of $\mathbf{1 6}$ vs $\mathbf{2 2}$, but these would be more subtle and difficult to visualize.
The relative activation energies for the formation of 17-20 accurately reflect the observed product distributions. The transition structures leading to $\mathbf{1 7}$ and $\mathbf{1 8}$ are calculated to be $3-4 \mathrm{kcal} / \mathrm{mol}$ lower in energy than those leading to $\mathbf{1 9}$ and $\mathbf{2 0}$ at the B3LYP/6-31G(d)//AM 1 level of theory. This is not the case for the Diels-Alder reaction of triene 22. Experimentally, only cycloadduct 23 is observed while the calculations suggest that a mixture of $\mathbf{2 3}$ and $\mathbf{2 4}$ should be obtained. This incorrect result may be a consequence of using the AM1 geometries for the transition structures leading to $\mathbf{2 3}$ and $\mathbf{2 4}$ for the single-point B3LYP/6-31G(d) energy calculations.
In contrast to $\mathbf{1 b}-\mathbf{e}$, trienes $\mathbf{2 a}-\mathbf{k}$, and $\mathbf{2 2}$ all cyclized to produce endo-derived trans-fused isomers as the major products. The diastereomeric ratio from the
cycloaddition of triene $\mathbf{2 b}(\mathbf{9 b} / \mathbf{1 0 b} / \mathbf{1 1 b} / \mathbf{1 2 b}=10: 1: 10: 1)$ reflects a good endo/exo selectivity, but no diastereofacial selectivity. This result indicates that the $A_{1,3}$ interaction between benzyl at $R_{1}$ and hydrogen at $R_{2}$ in transition state $\mathbf{1 1}$ (Figure 4) is not significant, despite the axial position of $R_{1}$. As the size of the $R_{2}$ group increased to a methyl in $\mathbf{2 c}$ and $\mathbf{2 e - f}$, the pathway through the transition states $\mathbf{1 1}$ and $\mathbf{1 2}$ are largely suppressed and good stereofacial selectivity is achieved. As expected, the reaction of $\mathbf{2 d}$ provided a good diastereofacial selectivity due to the larger isopropyl ( $\mathrm{R}_{1}$ ) and dimethoxybenzyl $\left(\mathrm{R}_{3}\right)$ groups, as well as good endo/exo selectivity. It appears that the endo selectivity among trienes $\mathbf{2 f}, \mathbf{2 h}$, and $\mathbf{2 j}$ is rate dependent, as evidenced by the observed endo/exo ratios and reaction times of $\mathbf{2 f}$ ( $18 \mathrm{~h}, 9: 1$ ), $\mathbf{2 h}$ ( 15 days, $3: 2)$, and $\mathbf{2 j}$ ( $80 \mathrm{~h}, 3: 1$ ).

The linker length between a diene and a dienophile for a Diels-Alder reaction is believed to affect the orbital overlap. ${ }^{12}$ Trienes $\mathbf{2 b} \mathbf{- k}$ are more reactive toward DielsAlder reactions to form 5,6-fused cycloaddition products at room temperature, while trienes $\mathbf{1 b}$ - e require heating to afford 6,6-fused hydroisoquinones. The enhanced reactivity of compounds $\mathbf{2 a}-\mathbf{k}$ relative to compounds la-d may be attributed to the ring-size difference. That is, the triene system for the smaller 5,6-fused bicycloadducts was able to organize more effectively for the cycloadditions than the system for 6,6-fused rings. It was also shown that the reactivity in these systems was very sensitive to variations of substituents $R_{1}, R_{2}$, and $R_{3}$. The relative reactivity in $\mathbf{2 a} \mathbf{-} \mathbf{j}$ decreases when the $R_{1}$ group is changed from benzyl to sterically more hindered isopropyl. In addition, when we tested triene $\mathbf{2 k}$, which bears a hydrogen at $\mathrm{R}_{1}$, the cyclization proceeded very slowly (18 days). It appears that an $\mathrm{R}_{1}$ group of moderate size is in the best position to accelerate the cycl oaddition. The reaction was slowed when $\mathrm{R}_{2}$ was changed from hydrogen to a methyl group, although the larger $\mathrm{R}_{2}$ group can enhance the diastereofacial selectivity across the dienophile.

Triene $\mathbf{2 j}$ cyclized faster than $\mathbf{2 f}$, and $\mathbf{2 f}$ cyclized faster than $\mathbf{2 h}$, suggesting a trend that the tertiary amine reacts more slowly than the tertiary amides. The diene that is freefrom the conjugation with the amide carbonyl group in triene $\mathbf{2 j}$ is in the best position to cyclize with the dienophile. Trienes $\mathbf{2 2}$ cyclized much faster than 16. This result relates to the corresponding intermolecular cycloaddition between acrylate and 2,4-pentadienoate, which produces the ortho product preferentially via an endo transition state. ${ }^{10,11}$

It is interesting that trienes $\mathbf{2 a}-\mathbf{f}, \mathbf{k}, \mathbf{1 6}$, and $\mathbf{2 2}$ containing both electron-deficient diene and electrondeficient dienophile cyclized under surprisingly mild conditions. The complementary electron demand is not required between the two reacting partners. There had been occasional examples of facile Diels-Alder reactions in the literature that do not appear to have complementary electronic demand. For example, the dimerization of 2-methoxycarbonyl-1,3-butadiene took place spontaneously at room temperature. ${ }^{13}$ These examples were generally limited to theoretical and mechanistic arguments. We are interested in the utilizization of these reactions in the stereoselective syntheses of heterocydic compounds. The mild reaction conditions can facilitate

[^5]our further implementation of solid-phase technology in the construction of molecular libraries for biological evaluations.

The bond lengths of the forming bonds for the transition structures leading to the products 9-12, 17-20, and $\mathbf{2 3 - 2 6}$ are given. ${ }^{14}$ The formation of the new bonds is even more asynchronous than in the 6,6-systems as expected with the $\mathrm{C}_{1}-\mathrm{C}_{2}$ (lactam ring) bond being shorter than the $\mathrm{C}_{3}-\mathrm{C}_{4}$ (cyclohexene ring) bond by $0.37 \AA$ (AM 1) and $0.5 \AA$ (RHF/3-21G) on average.

## Conclusion

We have observed a class of cycloadditions of amino acid derived trienes in the synthesis of novel isohydroindole derivatives and found that the major products were derived from endo transition states. The corresponding 6,6 fused hydroisoquinoline derivatives were formed in refluxing tol uene through exo transition states. The $\mathrm{A}_{1,3}$ interaction between $R_{1}$ and $R_{2}$ appears to have an important impact on the diastereomeric distribution of the products. A sterically more hindered $\mathrm{R}_{1}$ or $\mathrm{R}_{2}$ group affords stronger discrimination of the two diastereotopic faces of the dienophile for its access to the diene during cycl oaddition.

These reported Diels-Alder reactions to form isohydroindoles lack complementary electronic demand and can take place under mild thermal conditions. Furthermore, the stereoselectivity of the cyclizations between an electron-deficient diene and an electron-deficient dienophile can reach up to $100 \%$ to give a si ngle stereoisomer.

Recently, Houk and co-workers published several reports of the successful application of DFT, especially the hybrid HF-DFT gradient corrected methods, to the study of pericyclic reactions. ${ }^{15}$ Based on our experimental results, we have shown that the B3LYP energies with a moderate-sized basis set using the RHF/3-21G-optimized geometries gives excellent estimates of the relative reactivity and product distributions of the intramol ecular Diels-Alder reactions studied experimentally herein.

We are investigating these reactions to generate complex functionalized heterocyclic libraries.

## Experimental Section

Computational Details. The programs GAUSSIAN-94, GAUSSIAN-98, and SPARTAN 5.0 were used for the ab initio and DFT calculations. ${ }^{16,17}$ The CAChe (v. 3.8) worksystem ${ }^{18}$ was used for the AM 1 calculations. Optimized geometries were obtained at the AM1 and RHF/3-21G levels of theory. All stationary points (minima and transition structures) were characterized by calculation of their harmonic vibrational frequencies at the corresponding level (AM1 or RHF/3-21G).

[^6]All minima had no negative eigenvalues of the Hessian and no imaginary frequencies. All first-order saddle points (transition structures) had one negative eigenvalue of the Hessian and one imaginary frequency. Single-point energies were cal culated using the Becke three-parameter hybrid H artree-Fock-DFT method ${ }^{19}$ with a 6 -31G(d) basis set. ZPE corrections scaled by 0.8929 were applied to the RHF/3-21G calculated energies. B3LYP/6-31G(d)//RHF3-21G and B3LYP/6-31G(d)// AM1 energies are uncorrected.

General Procedure for Preparation of 3a-d and 13. To triethyl phosphonoacetate, 2-phosphonopropionate, or 4-phosphono-(E)-crotonate ( 13.4 mmol ) in dry THF ( 50 mL ) was added potassium tert-butoxide ( $12 \mathrm{~mL}, 12 \mathrm{mmol}, 1 \mathrm{M}$ in THF) at $0-5^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for $1 \mathrm{~h} . \mathrm{N}$-Boc-L-phenylalanal or N-Boc-L-valine ( 16.5 mmol ) in THF ( 20 mL ) was added slowly at $0-5^{\circ} \mathrm{C}$. Some inorganic salt precipitated as sticky material. The mixture was stirred at room temperature for 2 h . Sodium bicarbonate ( $5 \%, 100 \mathrm{~mL}$ ) was added to quench the reaction. The mixture was extracted with ether ( $2 \times 100 \mathrm{~mL}$ ). The combined organic phase was dried over sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography. The column was packed with silica gel using a mixture of benzene and hexanes (1:1). The sample was dissolved in the same solvent mixture for loading and was then eluted with $5-10 \%$ ethyl acetate in hexanes.
(4S)-4-N-tert-Butoxycarbonylamino-5-phenyl-2-transpentenoic Acid, Ethyl Ester (3a). An oil that solidified slowly was obtained in $75 \%$ yield: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) $\delta 7.23-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.94(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.3$ $\mathrm{Hz}), 4.61(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.82-2.93(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz ) $\delta$ 166.2, 155.0, 147.6, 136.5, 129.4, 128.6, 126.9, 121.1, 79.9, 60.4, 52.3, 40.9, 28.3, 14.2. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ : C, 67.71; H, 7.84; N, 4.39. Found: C, 68.03; H, 7.86; N, 4.27.

4-S-4-N-tert-Butoxycarbonylamino-5-phenyl-2-methyl-2-trans-pentenoic Acid, Ethyl Ester (3b). An oil that solidified slowly was obtained in $26 \%$ yield. A side product, from cyclization of the cis isomer by attack of Boc-protected amino group on the ethyl ester to kick out the ethoxide group, was obtained in $27 \%$ yield using $20 \%$ ethyl acetate in hexanes as the eluent. For 3b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.16-$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 6.51-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}$ $=7.0 \mathrm{~Hz}), 2.74-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 1.40$ $(\mathrm{s}, 9 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $167.6,154.8,140.1,136.6,129.4,128.3,128.2,126.5,79.5,60.5$, 50.2, 41.1, 28.2, 14.1, 12.5; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$ 334.2018, found 334.2021. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}$ : C , 68.47; H, 8.11; N, 4.20; found: C, 68.44; H, 8.02; N, 4.11.

4-S-4-N-tert-Butoxycarbonylamino-5-methyl-2-transhexenoic Acid, Ethyl Ester (3c). An oil was obtained in 91\% yield: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.51$ (dd, $1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}$, $15.6 \mathrm{~Hz}), 5.57$ (dd, 1H, J $=1.5 \mathrm{~Hz}, 15.6 \mathrm{~Hz}, 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $9.0 \mathrm{~Hz}), 3.81(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.45-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}$, $9 \mathrm{H}), 5.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.56(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.55(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 165.9,155.2$, 147.2, 121.1, 78.9, 60.0, 56.5, 32.0, 31.7, 28.0, 18.6, 17.8, 13.9; HRMS cal cd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$272.1862, found 272.1871.

4-S-4-tert-Butoxycarbonylamino-2,5-dimethyl-2-transhexenoic Acid, Ethyl Ester (3d). An oil was obtained in 56\% yield. A side product from cydization of the cis isomer by attack of Boc-protected amino group on the ethyl ester to kick out the ethoxide group was obtained in $37 \%$ yield using $15 \%$ ethyl acetate in hexanes as the eluent. For 3d: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $300 \mathrm{MHz}) \delta 6.51$ (dd, $1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz}, 9.2 \mathrm{~Hz}$ ), 4.58 (s, broad, $1 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}), 1.71-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.91(\mathrm{~d}$,
 139.9,129.6, 79.3, 60.6, 53.9, 32.9, 28.4, 18.5, 18.4, 14.2, 13.0; HRMS cal cd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$286.2018, found 286.2014.
(6S)-6-N-tert-Butoxycarbonylamino-7-methyl-trans,-trans-2,4-octadienoic Acid, Ethyl Ester (13). Obtained in

69\% yield from column chromatography: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 7.27(d d, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz}, 15.3 \mathrm{~Hz}), 6.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $11.0 \mathrm{~Hz}, 15.1 \mathrm{~Hz}$ ), 5.99 (dd, $1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 15.3 \mathrm{~Hz}$ ), 5.86 (d, $1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 4.65(\mathrm{~d}$, broad, $1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 4.19(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 1.76-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.8,155.3,143.7,141.8,128.3$, 121.0, 60.1, 57.3, 32.3, 28.3, 28.2, 18.6, 18.0, 14.1.

General Procedure for Removal of Boc from 3a-d. Compounds $\mathbf{3 a -}$ - d and $\mathbf{1 3}$ were treated with 20\% trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 20 min . The mixture was evaporated, coevaporated twice with chloroform, and dried in vacuo to give TFA salts $\mathbf{4 a - d}$ and $\mathbf{1 4}$, which were not purified and characterized, and were used directly for benzylation, 2,4-dimethoxybenzylation, or acylation.
General Procedure for Reductive Benzylation and 2,4Dimethyoxybenzylation. These reactions were performed by strictly following the procedure described in ref 20.
(4S)-4-N-Benzylamino-5-phenyl-2-trans-pentenoic acid, ethyl ester (4e): ${ }^{1 \mathrm{H}}$ NMR (CD ${ }_{3} \mathrm{OD}$ ) $\delta 7.10-7.29$ ( $\mathrm{m}, 10 \mathrm{H}$ ), 6.76 (dd, $1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, 15.8 \mathrm{~Hz}), 5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}), 4.14$ $(q, 2 H, J=7.1 \mathrm{~Hz}), 3.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.3 \mathrm{~Hz}), 3.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=13.3 \mathrm{~Hz}), 3.45(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.72-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.25$ (t, 3H, J $=7.2 \mathrm{~Hz}$ ); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$ 310.1807, found 310.1797.
(4S)-4-N-Benzylamino-5-phenyl-2-methyl-2-transpetenoic acid, ethyl ester (4f): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ 6.97-7.24 $(\mathrm{m}, 10 \mathrm{H}), 6.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, 9.5 \mathrm{~Hz}), 3.94-4.07(\mathrm{~m}$, 2 H ), $3.51-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, 1 \mathrm{H}, 13.5 \mathrm{~Hz}), 2.66$ (dd, 1H, J $=6.9 \mathrm{~Hz}, 13.3 \mathrm{~Hz}), 2.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 13.3 \mathrm{~Hz}), 1.60(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}), 0.99(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}, 75\right.$ MHz ) $\delta$ 167.8, 139.8, 137.6, 129.5, 129.3, 128.4, 128.3, 127.9, 127.3, 126.9, 126.4, 60.6, 56.6, 51.4, 41.3, 14.2, 12.5; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 324.1964$, found 324.1958.
(4S)-4-(N-2,4-Dimethoxybenzyl)amino-5-methyl-2-transhexenoic acid, ethyl ester (4g): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$ ) $\delta 7.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}, 15.9 \mathrm{~Hz})$, $6.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 6.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, 8.2 \mathrm{~Hz})$, $6.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.9 \mathrm{~Hz}), 4.07(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.91(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=13.3 \mathrm{~Hz}$ ), $3.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.28$ $(\mathrm{s}, 3 \mathrm{H}), 2.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right) \delta 166.1,160.5,159.0$, 150.1, 130.6, 122.8, 121.6, 103.9, 99.0, 64.6, 60.0, 54.9, 54.7, 46.9, 32.7, 19.0, 18.6, 14.3; HRMS cal cd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$ 322.2018, found 322.2031.
(4S)-4-N-Benzylamino-2,5-dimethyl-2-trans-hexanoic acid, ethyl ester (4h): ${ }^{1 H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta 7.08-$ 7.32 (m, 5H, 6.69 (dd, $1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}, 10.1 \mathrm{~Hz}), 4.06(\mathrm{q}, 2 \mathrm{H}$, J $=7.1 \mathrm{~Hz}), 3.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}), 3.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz})$, 3.02 (dd, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 10.2 \mathrm{~Hz}), 1.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz})$, $1.47-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right) \delta$ $167.6,143.6,141.1,129.9,128.4,127.0,126.9,60.8,60.5,51.5$, 33.3, 19.3, 18.6, 14.3, 13.3; HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$ 276.1964, found 276.1973.
(4S)-4-(N-2,4-Dimethoxybenzyl)amino-2,5-dimethyl-2-trans-hexenoic acid, ethyl ester (4i): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}, 9.9$ $\mathrm{Hz}), 6.38-6.48(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.6 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.4$ $\mathrm{Hz}), 3.13$ (dd, $1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 9.9 \mathrm{~Hz}), 1.79(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2$ $\mathrm{Hz}), 1.67-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}=6.7 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 167.9,159.9,158.5,143.8,130.3,129.2,120.7,103.4$, 98.3, 60.5, 60.3, 55.1, 55.0, 47.0, 32.7, 19.1, 18.4, 14.1, 13.1; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 336.2175$, found 336.2183 .
(6S)-6-N-Benzylamino-7-methyl-trans,trans-2,4-octadienoic acid, ethyl ester (15): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) $\delta 7.21-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.24$ (dd, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, 15.2 \mathrm{~Hz}), 5.94$ (dd, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, 15.3 \mathrm{~Hz}$ ), $5.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.3 \mathrm{~Hz}), 4.21$ $(q, 1 H, J=7.1 \mathrm{~Hz}), 3.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.3 \mathrm{~Hz}), 3.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$

[^7]$=13.3 \mathrm{~Hz}), 2.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 8.3 \mathrm{~Hz}), 1.68-1.79(\mathrm{~m}$, $1 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.88(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.0,144.5$, 144.2, 140.5, 129.9, 128.3, 128.0, 126.8, 120.5, 65.5, 60.2, 51.4, 32.6, 19.3, 18.4, 14.3; LC-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 298$, found 298.

General Procedure for Acylation with Hexadienoyl Chloride. An amine or benzylated amine compound (4a-i, 1 mmol ) in dry THF ( 20 mL ) was treated with triethylamine ( 0.3 mL ) and hexadienoyl chloride ( $0.2 \mathrm{~mL}, \sim 1.6$ equiv) at $0-5$ ${ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 20 min , quenched with $10 \%$ sodium carbonate ( 50 mL ), and stirred for another 0.5 h , followed by extraction with ether ( 100 mL ). The ether layer was washed again with $10 \%$ sodium carbonate (40 $\mathrm{mL})$, brine ( 50 mL ), and water ( $2 \times 50 \mathrm{~mL}$ ), dried over sodium sulfate, and evaporated. The residue was dried under high vacuum for 0.5 h before column purification for $\mathbf{1 a - e}$ and $\mathbf{2 a}$. For $\mathbf{2 b} \mathbf{- f}$, the crude residue was not purified and was directly dissolved in chloroform for the Diels-Alder reaction to complete.
(4S)-4-[N-Benzyl-N-(3,5-hexadienoyl)amino]-5-phenyl-2-trans-pentenoic acid, ethyl ester (1b): ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.95-7.54(\mathrm{~m}, 11 \mathrm{H})$, 5.67-6.37 (m, 4H), 4.985.17 (m,3H), $4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.3 \mathrm{~Hz}), 4.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.0$ $\mathrm{Hz}), 4.13(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.88-3.21(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 171.7,165.8,145.2$, 137.1, 136.6, 136.3, 136.2, 134.4, 133.8, 129.1, 128.7, 128.4, $127.7,127.5,127.0,126.6,126.4,125.3,122.7,116.9,116.5$, $60.3,58.6,50.2,38.1,37.7,14.0$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}$ $\left(\mathrm{MH}^{+}\right)$404.2226, found 404.2242.
(4S)-4-[N-Benzyl-N-(3,5-hexadienoyl)amino]-5-phenyl-2-methyl-2-trans-pentenoic acid, ethyl ester (1c): ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}\right) \delta 7.05-7.33(\mathrm{~m}, 10 \mathrm{H}), 6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=9.5 \mathrm{~Hz}), 6.30(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, 10.2 \mathrm{~Hz}, 17.0 \mathrm{~Hz}), 5.96$ (dd, $1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}, 15.3 \mathrm{~Hz}$ ), $5.67-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.34$ (q, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 5.00-5.5 .16(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.6$ $\mathrm{Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.6 \mathrm{~Hz}), 4.10(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.03-$ $3.15(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~J}=13.4 \mathrm{~Hz}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 171.5, 167.4, 137.4, 137.2, 136.4, 133.6, 130.9, 129.2, 128.7, $128.3,127.4,126.9,126.5,126.1,116.4,60.5,55.2,49.3,39.0$, 38.2, 14.0, 12.6; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$418.2382, found 418.2388 .
(4S)-4-[N-(2,4-Dimethoxybenzyl)-N-(3,5-hexadienoyl)-amino]-5-methyl-2-trans-hexenoic acid, ethyl ester (1d): ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.80$ (dd, $1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, 15.8 \mathrm{~Hz}$ ), $6.27-6.43(\mathrm{~m}, 3 \mathrm{H}), 5.81-6.09$ $(\mathrm{m}, 2 \mathrm{H}), 5.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}), 4.90-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=17.1 \mathrm{~Hz}), 4.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.2 \mathrm{~Hz}), 4.11(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.27(\mathrm{~m}, 3 \mathrm{H}), 2.17-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 171.7, 165.9, 160.4, 157.7, 144.8, 136.5, 133.5, 128.8, 127.4, $123.7,117.0,116.1,103.7,98.3,63.5,60.0,55.2,55.0,45.3,37.9$, 28.9, 20.1, 19.3, 14.0; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right)$ 416.2437, found 416.2453.
(4S)-4-[N-Benzyl-N-(3,5-hexadi enoyl )amino]-2,5-di-methyl-2-trans-hexenoic acid, ethyl ester (1e): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.09-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10,3$ $\mathrm{Hz}), 6.31(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 16.9 \mathrm{~Hz}), 5.78-6.03$ $(\mathrm{m}, 2 \mathrm{H}), 4.96-5.17(\mathrm{~m}, 3 \mathrm{H}), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.7 \mathrm{~Hz}), 4.46(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=17.7 \mathrm{~Hz}), 4.00-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}, 16.2 \mathrm{~Hz}$ ), 3.03 (dd, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 16.2 \mathrm{~Hz}$ ), $1.95-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}), 1.15(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz})$, $0.94(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 171.7, 167.4, 138.1, 137.4, 136.4, 133.6, $131.4,128.5,127.2,127.1,126.0,116.3,60.3,58.0,48.1,38.0$, 30.4, 19.4, 19.1, 14.0, 13.3; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 370.2382, found 370.2369.
(4S)-4-(N-2,4-Hexadienoylamino)-5-phenyl-2-methyl-2-trans-pentenoic acid, ethyl ester (2a): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $300 \mathrm{MHz}) \delta 7.08-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}, 9.6$ $\mathrm{Hz}), 6.00-6.20(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1 \mathrm{~Hz}), 5.04-5.14$ $(\mathrm{m}, 2 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, 13.4 Hz ), 2.83 (dd, $1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 13.5 \mathrm{~Hz}), 1.81(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$
$5.4 \mathrm{~Hz}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}$, 75 MHz ) $\delta$ 167.6, 165.6, 141.4, 139.4, 137.8, 136.6, 129.9, 129.5, $129.3,128.3,126.6,121.1,60.6,48.7,40.6,18.4,14.0,12.6 ;$ HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 328.1913$, found 328.1907.
(4S)-4-(N-Benzyl-N-hexa-2 ,4'-dienyl)amino-2,5-dimethyl-2-trans-hexanoic Acid, Ethyl Ester (2h). To a solution of 4h ( $154 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) in methylene chloride ( 10 mL ) was added hexa-2,4-dienal ( $0.120 \mathrm{~mL}, 1.10 \mathrm{mmol}$ ), acetic acid ( 0.2 mL ), and sodium triacetoxyborohydride ( $300 \mathrm{mg}, 1.42 \mathrm{mmol}$ ) in sequence under nitrogen. The mixture was stirred overnight, quenched with $10 \%$ aqueous sodium bicarbonate, and separated between 10\% aqueous sodium bicarbonate and methylene chloride. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by col umn chromatography using a mixture of hexanes and benzene ( 1 : 1) to give $\mathbf{2 h}(108 \mathrm{mg}, 54 \%)$. Further elution with benzene gave the cycloaddition products $9 \mathrm{~h}(19 \mathrm{mg}$ ) and $\mathbf{1 0 h}(9 \mathrm{mg})$. Compound $\mathbf{4 h}(21 \mathrm{mg}, 14 \%)$ was recovered. For $\mathbf{2 h}$ : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.7 .19-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{lH}, \mathrm{J}=$ $11.0 \mathrm{~Hz}, 1.3 \mathrm{~Hz}$ ), 5.97-6.16 (m, 2H ), 5.50-5.69 (m, 2H), 4.23 $(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.2 \mathrm{~Hz}), 3.19-3.39(\mathrm{~m}$, $2 \mathrm{H}), 3.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}, 8.5$ $\mathrm{Hz}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 1.73(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}=1.1 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.08(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz})$, $0.73(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.9$, 140.4, 139.9, 132.2, 131.1, 130.7, 129.7, 128.3, 128.1, 128.0, 126.5, 63.0, 60.5, 53.6, 51.4, 29.7, 20.1, 19.9, 17.9, 14.2, 13.3.
(4S)-4-N-Hexa-2 ,4-dienyl-2,5-dimethyl-2-trans-hexanoic Acid, Ethyl Ester (2i). Compound 3d ( $600 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) was treated with $20 \%$ TFA in methylene chloride ( 30 mL ) for 20 min . The mixture was evaporated to a residue, pumped overnight, and treated by fol lowing the procedure to make $\mathbf{2 h}$. Compound 2i was purified by elution with 5-8\% ethyl acetate in hexane from column chromatography in $410 \mathrm{mg}, 73 \%$ : ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.52$ (dd, $1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$ ), 5.99-6.13 (m, 2H), 5.53-5.67 (m, 2H), 4.20 (q, 2H, J $=7.1$ $\mathrm{Hz}), 3.18-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.04$ (dd, J $=13.8 \mathrm{~Hz}, 7.1 \mathrm{~Hz}$ ), 1.85 $(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7$ $\mathrm{Hz}), 1.31(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.95(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.88(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.9,143.0$, 131.8, 131.0, 129.5, 129.3, 128.6, 60.7, 60.5, 49.2, 32.9, 19.3, 18.3, 17.9. 14.2, 13.1.
(6S)-6-(N-Benzyl-N-trans-crotonylamino)-7-methyl-trans,trans-2,4-octadienoic Acid, Ethyl Ester (16). Compound 15 in dry THF was treated with triethylamine and trans-crotonyl chloride by following the general procedure for acylation with hexadienoyl chloride. The product was purified by column chromatography and eluted with 5-10\% ethyl acetate in hexanes to give $\mathbf{1 6}$ in $84 \%$ yield: ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $300 \mathrm{MHz}) \delta 6.91-7.32(\mathrm{~m}, \sim 7 \mathrm{H}), 5.89-6.22(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 4.46-4.58(\mathrm{~m}, 3 \mathrm{H}), 4.17(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $2.05-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $6.5 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.3,166.8,143.7,142.7,140.1$, $137.7,131.5,128.6,127.4,126.6,122.5,121.6,64.6,60.3,49.4$, 29.7, 20.2, 19.6, 18.2, 14.2; HRMS cal cd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 356.2226, found 356.2217.

Diels-Alder Reaction To Make Compounds 5b, 6b, 7b, and 8b. Triene $\mathbf{1 b}$ ( $92 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) in toluene ( 10 mL ) was heated under nitrogen at reflux for 16 h . Toluene was removed in vacuo. The residue was purified by slow column chromatography without air pressure: 8\% ethyl acetate in hexanes to el ute the fast isomer ( $14 \mathrm{mg}, \mathbf{6 b}$, pure); $10 \%$ ethyl acetate in hexanes to elute a second fraction ( $5 \mathrm{mg}, \mathbf{8 b}$, not pure, containing other isomers); 15-20\% ethyl acetate in hexanes to elute a third fraction ( 66 mg as a mixture of $\mathbf{5 b}$ and $\mathbf{7 b}$ with no separation, ${ }^{1}$ H NMR showed a ratio of 3:1). The overall estimated ratio is $\mathbf{5 b}: \mathbf{6 b}: \mathbf{7 b}: \mathbf{8 b}=33: 10: 11: 3$, and the total yield is $94 \%$. The fraction for the mixture of $\mathbf{5 b}$ and $\mathbf{7 b}$ was purified in a second round column chromatography using 12\% ethyl acetate in hexanes to elute slowly without air pressure. The very initial fractions that were positive in an iodine chamber were identified as $\mathbf{5 b}(6 \mathrm{mg})$. The last half portion of the eluent was combined to give 16 mg ( $\mathbf{5 b} \mathbf{7} \mathbf{7 b} \sim 1: 1$ ), which was purified
in a third round of column chromatography similarly to give 7b ( 2 mg ) by collecting the very last small fraction.

For 5b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11-7.33(\mathrm{~m}, 10 \mathrm{H})$, $5.66-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.61(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.6$ $\mathrm{Hz}), 3.79-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $4.9 \mathrm{~Hz}, 13.9 \mathrm{~Hz}), 2.63-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}$, $10.3 \mathrm{~Hz}, 10.3 \mathrm{~Hz}$, for H8), 2.26 (dd, $1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}, 18.0 \mathrm{~Hz}$ ), 2.09-2.17 (m, 2H), 1.96-2.08 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 174.1,168.6,137.6,137.3,129.6,129.1,128.9,128.7$, $128.6,127.5,126.8,124.6,60.4,58.9,48.6,40.0,38.6,35.6,34.9$, 28.6, 27.8, 13.9; obsd NOE ( $\mathrm{CD}_{3} \mathrm{OD}, 270 \mathrm{~K}, 400 \mathrm{MHz}$ ) between H 4 a and H 8 a (may be between H 7 and H 8 a due to overlapping of H 4 a and H 7 ), no NOE between H 1 and $\mathrm{H} 8 \mathrm{a}, \mathrm{H} 4 \mathrm{a}$ and H 8 , H 1 and $\mathrm{H} 4 \mathrm{a}, \mathrm{H} 8$ and H 8 a ; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 404.2226, found 404.2242.

For 6b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.08-7.34(\mathrm{~m}, 10 \mathrm{H})$, 5.65 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}$ ), $5.59-6.64(\mathrm{~m}, 1 \mathrm{H}), 5.39$ (d, broad, $1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 4.05-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.8 \mathrm{~Hz})$, $3.62(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H} 1), 3.18(\mathrm{dd}, 1 \mathrm{H}$, J $=3.8 \mathrm{~Hz}, 14.1 \mathrm{~Hz}), 2.34-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.31(\mathrm{~m}, 2 \mathrm{H})$, $2.02-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 10.8 \mathrm{~Hz}$, for H8a), $1.21(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.06$ (dd, $1 \mathrm{H}, \mathrm{J}=13.7 \mathrm{~Hz}$, 15.9 Hz for $\mathrm{H}^{\prime}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.3,173.2$, $137.5,136.2,131.0,129.3,129.1,129.9,128.5,127.9,127.4$, 126.2, 61.2, 57.4, 47.0, 45.8, 41.7, 38.6, 37.9, 35.4, 30.3, 14.6; obsd NOE $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ between H 1 and $\mathrm{H} 4 \mathrm{a}, \mathrm{H} 4$ and H 8 a , between H 1 and $\mathrm{H} 8 \mathrm{a}, \mathrm{H} 8$ and H 8 a , no NOE between H 4 a and H8a; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 404.2226$, found 404.2221.

For 7b: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.92-7.33(\mathrm{~m}, 10 \mathrm{H})$, $5.62-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1$ $\mathrm{Hz}), 3.84-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 8.6$ $\mathrm{Hz}, \mathrm{H} 1), 3.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, 13.9 \mathrm{~Hz}), 3.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $15.1 \mathrm{~Hz}), 2.56-2.72(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.38(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{dt}, 1 \mathrm{H}$, $J=4.1 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, \mathrm{H} 8 \mathrm{a}), 1.01(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,100 \mathrm{MHz}\right) \delta 173.9,169.7,138.9,137.4,129.6$, $129.1,128.8,128.3,128.0,127.8,127.5,127.1,124.8,60.9,58.7$, $49.2,42.7,42.5,38.0,37.5,30.3,29.6,14.2$; obsd NOE (CDCl ${ }_{3}$, 400 MHz ) between H 1 and H 8 a , between H 4 a and $\mathrm{H}-\mathrm{R}_{1}$, no NOE between H 4 a and H 8 a ; ${ }^{1} \mathrm{H}$ decoupling NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz ) at 1.97 gave J ${ }_{8 \mathrm{a}-1}=4.3 \mathrm{~Hz} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}$ $\left(\mathrm{MH}^{+}\right) 404.2226$, found 404.2239.

Diels-Alder Reaction To Make Compounds 5c and 6c. Triene 1c ( $116 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) in toluene ( 10 mL ) was heated under nitrogen at reflux for 50 h . Toluene was removed in vacuo. The residue was purified by slow column chromatography without air pressure: a mixture of benzene and hexanes (1:1) was used to pack column and load the sample; $5 \%$ and then $10 \%$ ethyl acetate in hexanes to elute the unreacted starting material ( $9 \mathrm{mg}, 8 \%$ ); 15\% ethyl acetate in hexanes to elute the fast isomer $\mathbf{6 c}(24 \mathrm{mg}, 21 \%$, oil); $20 \%$ and $30 \%$ ethyl acetate in hexanes to elute a second fraction $\mathbf{5 c}(74 \mathrm{mg}, 64 \%$, oil).

For 5c: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.18-7.38(\mathrm{~m}, 10 \mathrm{H})$, $5.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 5.37-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, broad, $1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{~Hz}), 4.02(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $14.4 \mathrm{~Hz}), 3.27-3.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1), 3.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, 13.4 Hz ), 2.79 (dd, $1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, 13.4 \mathrm{~Hz}$ ), 2.63 (s, broad, $2 \mathrm{H}, \mathrm{H} 4 \mathrm{a}$ and H 8 a$), 2.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.8 \mathrm{~Hz}, 15.5 \mathrm{~Hz}), 2.04$ (dd, 1H, J $=4.4 \mathrm{~Hz}, 18.1 \mathrm{~Hz}$ ), 1.91 (dd, $1 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, 15.5$ $\mathrm{Hz}), 1.16(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.76(\mathrm{~s}, 3 \mathrm{H}), 0.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 17.9 \mathrm{~Hz}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.2,170.3$, 136.7, 136.6, 130.1, 129.6, 128.6, 128.5, 128.1, 127.6, 127.2, 127.0, 60.5, 54.9, 47.4, 45.1, 42.6, 40.5, 36.4, 31.3, 29.4, 23.2, 13.8; obsd NOE (CD3OD, 400 MHz ) between H4a and H8a, H 1 and $\mathrm{Me} 8, \mathrm{H} 1$ and H 7 ; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 418.2382, found 418.2388 .

For 6c: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.08-7.36(\mathrm{~m}, 10 \mathrm{H})$, $5.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 5.55-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.36$ (d, broad, $1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz}), 4.08-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.5$ Hz ), 3.49-3.54 (m, 1H, H1), 3.07 (dd, 1H, J = $3.7 \mathrm{~Hz}, 14.0$ Hz ), 2.86 (d, broad, $1 \mathrm{H}, \mathrm{J}=19.6 \mathrm{~Hz}$ ), $2.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.4$ $\mathrm{Hz}, 14.0 \mathrm{~Hz}$ ), 2.20 (dd, 1H, J = $1.9 \mathrm{~Hz}, 15.6 \mathrm{~Hz}$ ), $1.85-2.01$ $(\mathrm{m}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H} . \mathrm{J}=7.2 \mathrm{~Hz}), 0.98(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.7 \mathrm{~Hz}$, $15.4 \mathrm{~Hz}), 0.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.0$,
173.5, 137.6, 136.5, 131.0, 129.0, 129.0, 128.9, 128.3, 128.0, $127.5,125.8,61.4,55.0,47.2,45.2,44.5,38.8,38.2,37.4,31.7$, $16.2,14.5$; obsd NOE ( $\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$ ) between H 1 and $\mathrm{M} \mathrm{e8}$, and between H 4 a and $\mathrm{Me8}$; HRMS cal cd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 418.2382, found 418.2382.

Diels-Alder Reaction To Make Compounds 5d and 6d. Triene 1d ( $148 \mathrm{mg}, 0.36 \mathrm{mmol}$ ) in toluene ( 20 mL ) was heated under nitrogen at reflux for 16 h . Toluene was removed in vacuo. ${ }^{1} \mathrm{H}$ NMR of the mixture showed two isomeric products in a 3:1 ratio. The residue was purified by slow column chromatography without air pressure: a mixture of benzene and hexanes ( $1: 1$ ) was used to pack the column and load the sample; $10 \%$ ethyl acetate in hexanes to elute a fast unknown; $15 \%$ ethyl acetate in hexanes to elute the fast isomer $\mathbf{6 d}$ ( 28 $\mathrm{mg}, 19 \%)$, and the slow isomer $5 \mathbf{d}(82 \mathrm{mg}, 55 \%)$.

For 5d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2$ $\mathrm{Hz}), 6.39-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 3.96-4.07$ $(\mathrm{m}, 2 \mathrm{H}), 3.75-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, \mathrm{H} 1$ ), 2.76 (s, broad, $1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}$ ), 2.60 (dd, $1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, 17.3 \mathrm{~Hz}$ ), 2.32-2.51 (m, 2H), 2.07-2.28 (m, 3H), 1.94 (d, broad, $1 \mathrm{H}, \mathrm{J}=18.1 \mathrm{~Hz}$ ), $1.14(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.98(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.4,169.3,160.2,158.6,132.0$, 129.6, 125.0, 117.9, 104.3, 98.1, 62.1, 60.4, 55.32, 55.27, 41.6, 40.3, 36.1, 33.0, 31.5, 28.9, 26.8, 19.9, 18.4, 14.0; obsd NOE $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$ ) between H 1 and H 7 and between H 4 a and Me of i-Pr.

For 6d: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0$ $\mathrm{Hz}), 6.41-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}$, broad, J $=9.8 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.2 \mathrm{~Hz}), 4.03-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.95$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=14.2 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.80(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H} 1), 2.34-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.08(\mathrm{~m}$, $2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.57(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 10.5$ $\mathrm{Hz}, 10.5 \mathrm{~Hz}, \mathrm{H} 8 \mathrm{a}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $\left.7.3 \mathrm{~Hz}), 0.84(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right) ~$ $\delta 174.6,173.0,160.0,158.4,131.8,129.1,125.5,118.1,103.6$, $98.2,63.3,60.6,55.2,54.9,46.4,46.1,44.6,39.2,35.8,35.6$, 30.0, 22.5, 15.7, 14.0; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right)$ 416.2437, found 416.2437.

Diels-Alder Reaction To Make Compounds 5e and 6 e. Triene $\mathbf{1 e}(150 \mathrm{mg}, 0.41 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was heated under nitrogen at reflux for 6 days. Toluene was removed in vacuo. ${ }^{1 \mathrm{H}}$ NMR showed two isomers in a 2.5:1 ratio. The residue was purified by slow column chromatography without air pressure: a mixture of benzene and hexanes ( $1: 1$ ) was used to pack column and load the sample; 5\% ethyl acetate in hexanes to elute the fast minor isomer $\mathbf{6 e}$ ( $31 \mathrm{mg}, 21 \%$ ); 10\% ethyl acetate in hexanes to elute the slow isomer $\mathbf{5 e}(67 \mathrm{mg}$, 45\%).

For 5e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.24-7.31(\mathrm{~m}, 5 \mathrm{H})$, $5.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.3 \mathrm{~Hz}), 5.27-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.09(\mathrm{~m}$, 2 H ), $3.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 3.02$ (dd, $1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, 5.2$ $\mathrm{Hz}, \mathrm{H} 1), 2.77$ (s, broad, $1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}$ ), 2.61 (dd, $1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}$, 15.8 Hz ), 2.50 (d, broad, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H} 8 \mathrm{a}), 2.37$ (dd, $1 \mathrm{H}, \mathrm{J}$ $=3.5 \mathrm{~Hz}, 15.7 \mathrm{~Hz}), 1.97-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.99(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ) $\delta 176.6,170.9,136.9,129.8$, $128.4,127.9,127.5,127.4,60.5,59.5,49.4,45.5,40.5,36.9,36.3$, 31.7, 29.9, 23.7, 21.4, 18.6, 13.9; coupling constants, 0 Hz between H 4 a and $\mathrm{H} 8 \mathrm{a}, 5.2-6.6 \mathrm{~Hz}$ between H 1 and H 8 a (not accurate due to broadness); obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) between H 1 and $\mathrm{H} 7, \mathrm{H} 1$ and $\mathrm{Me} 8, \mathrm{H} 4 \mathrm{a}$ and H 8 a . HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 370.2382$, found 370.2383 .

For 6e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23-7.36(\mathrm{~m}, 5 \mathrm{H})$, $5.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}), 5.60-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.48$ (d, broad, $1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}), 3.97-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.6 \mathrm{~Hz})$, $3.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, \mathrm{H} 1), 2.86(\mathrm{~d}$, broad, $1 \mathrm{H}, \mathrm{J}=$ 17.4 Hz ), $2.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.1 \mathrm{~Hz}), 2.00-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (dd, 1H, J $=4.7 \mathrm{~Hz}, 18.3 \mathrm{~Hz}$ ), 1.64 (dd, $1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 11.2$ $\mathrm{Hz}, \mathrm{H} 8 \mathrm{a}), 1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.24(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $1.13(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.67(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 176.5,173.5,137.5,128.6,128.5$, 127.7, 127.5, 60.9, 59.7, 49.4, 48.6, 44.1, 38.9, 36.9, 36.3, 31.9, 23.7, 15.9, 15.5, 13.9; obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) between H 1 and $\mathrm{Me} 8, \mathrm{H} 4 \mathrm{a}$ and Me 8 .

Diels-Alder Reaction To Make Compounds 9a and 10a. Triene 2a ( $96 \mathrm{mg}, 0.29 \mathrm{mmol}$ ) in toluene ( 10 mL ) was heated under nitrogen at reflux for 7 h . Toluene was removed in vacuo. The residue was purified by slow column chromatography without air pressure: the fast isomer was eluted with $0.5 \%$ methanol in methylene chloride to give 9 ( $65 \mathrm{mg}, 68 \%$ ). The slow isomer was eluted with $1 \%$ methanol in methylene chloride to give 10a ( $21 \mathrm{mg}, 22 \%$ ).

For 9a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.14-7.35(\mathrm{~m}, 5 \mathrm{H})$, 6.09 (dt, 1H, J $=2.1 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 9.7 \mathrm{~Hz}$ ), $5.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.4$ $\mathrm{Hz}, 3.4 \mathrm{~Hz}, 9.7 \mathrm{~Hz}), 5.23(\mathrm{~s}$, broad, 1 H$), 4.11-4.28(\mathrm{~m}, 2 \mathrm{H})$, 3.74 (ddd, 1H, J $=3.4 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, 12.3 \mathrm{~Hz}, \mathrm{H} 3$ ), 3.12 (dd, 1 H , $\mathrm{J}=3.2 \mathrm{~Hz}, 13.9 \mathrm{~Hz}), 2.82(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a})$, 2.51 (dd, $1 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}, 13.2 \mathrm{~Hz}), 2.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}$, 13.2 Hz, H3a), 2.18-2.22 (m, 1H), 1.37 (s, 3H), 1.32 (t, 3H, J $=7.1 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 175.0,173.9,137.9,133.0,128.9,128.6,126.9,121.8,60.6$, 56.0, 48.9, 46.3, 43.2, 41.7, 40.5, 18.2, 17.9, 14.0; ${ }^{1} \mathrm{H}$ NMR coupling constants, 13.2 Hz between H3a and H7a, 9.3-9.8 Hz between H 3 and H 3 a ; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 328.1913, found 328.1915.

For 10a: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.13-7.34(\mathrm{~m}, 5 \mathrm{H})$, 5.93 (dt, 1H, J $=3.3 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 9.9 \mathrm{~Hz}$ ), $5.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$, $5.50(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 9.9 \mathrm{~Hz}), 4.01-4.09(\mathrm{~m}, 1 \mathrm{H})$, $3.83-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}$, broad, $1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H} 3), 3.04$ (dd, $1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 2.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}$, H3a), 2.72-2.82 (m, 2H), 2.63-2.72(m, 1H), $1.22(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 75 MHz ) $\delta$ 176.03, 175.97, 136.9, 132.3, 129.2, 128.6, 126.7, 121.5, 60.7, 55.5, 48.1, 44.9, 42.2, 39.2, 35.8, 15.9, 14.2, 10.1; obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) between H 3 a and H 7 a , H 3 and $\mathrm{Me} 4, \mathrm{H} 3 \mathrm{a}$ and H 5 ; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$327.1834, found 327.1829.

Diels-Alder Reaction To Make Compounds 9b and 11b. The crude triene 2b, prepared from $\mathbf{4 e}(90 \mathrm{mg}, 0.29 \mathrm{mmol})$ by following the general procedure for acylation, was dissolved in chloroform and kept in the dark. The Diels-Alder reaction was monitored by ${ }^{1} \mathrm{H}$ NMR (a small part of the solution was taken in a separate flask; chloroform was blown away with nitrogen; the residue was dissolved in $\left.\mathrm{CDCl}_{3}\right)$. The cycloaddition was complete in $12 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR showed an isomeric product ratio of 10:10:1:1. The residue was purified by slow column chromatography without air pressure: a mixture of benzene and hexanes (1:1) was used to pack column and load the sample; $5 \%$ ethyl acetate in hexanes to elute the fast isomer 9b (46 mg, 39\%); 8\% ethyl acetate in hexanes to elute a second pure isomer 11b ( 6 mg ) and a third fraction of 11b $(44 \mathrm{mg})$ containing minor $\mathbf{1 0 b}$ and $\mathbf{1 2 b}$.
For 9b: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.50-7.36(\mathrm{~m}, 10 \mathrm{H})$, $6.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}), 5.55(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}, 9.7 \mathrm{~Hz})$, $5.11(d, 1 H, J=15.3 \mathrm{~Hz}), 3.96-4.16(\mathrm{~m}, 3 \mathrm{H}), 3.68$ (ddd, 1 H , J $=3.1 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, \mathrm{H} 3$ ), 3.39 (dd, 1H, J $=3.0 \mathrm{~Hz}, 15.6$ $\mathrm{Hz}), 3.01$ (dd, 1H, J $=5.7 \mathrm{~Hz}, 15.7 \mathrm{~Hz}$ ), 2.93 (dd, $1 \mathrm{H}, \mathrm{J}=6.6$ $\mathrm{Hz}, 11.0 \mathrm{~Hz}, \mathrm{H} 4), 2.70-2.87$ (m, 2H ), 2.12 (dt, 1H, $9.9 \mathrm{~Hz}, 11.2$ $\mathrm{Hz}, 11.2 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.21(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.95(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 7.2 Hz ); ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.0,172.6,137.7,136.7$, 133.2, 129.5, 128.5, 128.3, 127.7, 127.2, 126.4, 123.0, 60.4, 59.8, 48.7, 47.7, 44.2, 39.6, 36.2, 34.1, 17.4, 14.2; obsd NOE: between H3a and Me5, H4 and H5, H3 and H4, H3 and H7a, H3 and $\mathrm{H} 3 \mathrm{a}, \mathrm{H} 3 \mathrm{a}$ and $\mathrm{H} 4 ; \mathrm{HRMS}$ cal cd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 404.2226$, found 404.2241.
For 11b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta \_6.90-7.34(\mathrm{~m}, 10$ H), $6.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.58\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}^{-}=3.4 \mathrm{~Hz}, 3.4 \mathrm{~Hz}\right.$, $9.8 \mathrm{~Hz}), 4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.9 \mathrm{~Hz}), 3.91-4.08(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=14.9 \mathrm{~Hz}), 3.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, \mathrm{H} 4), 1.36$ (m, 1H, H7a), 2.76 (m, 1H, H5), 2.65-2.78 (m, 2H), 2.78 (dt, $1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.19(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $172.8,172.5,138.1,136.7,133.0,129.3,128.7,128.5,128.1$, $127.4,126.7,122.8,60.4,58.7,45.2,45.0,42.6,39.8,34.2,33.2$, 17.0, 14.1; obsd NOE between H4 and H8, H7a and H8, H4 and $\mathrm{H} 7 \mathrm{a}, \mathrm{H} 3 \mathrm{a}$ and $\mathrm{Me5}, \mathrm{H} 4$ and H 5 ; HRMS cal cd for $\mathrm{C}_{26} \mathrm{H}_{30^{-}}$ $\mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$404.2226, found 404.2238.

Diels-Alder Reaction To Make Compounds 9c and 10c. Compound $\mathbf{4 f}$ ( $95 \mathrm{mg}, 0.29 \mathrm{mmol}$ ) was used by following
the procedure for synthesis of $\mathbf{9 b}$ and $\mathbf{1 1 b}$. The cycl oaddition was found complete in $20 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR showed a mixture of isomeric products in a ratio of 83:25:1:1. The residue was purified by slow column chromatography without air pressure: a mixture of benzene and hexanes (1:1) was used to pack column and load the sample; $8 \%$ ethyl acetate in hexanes to elute a fraction 9c ( 16 mg , pure) and a second fraction ( 79 mg ) as a mixture of $\mathbf{9 c}$ and $\mathbf{1 0 c}$. The total recovered yield from 2c was $73 \%$. The second fraction was purified by a second round of column chromatography: $0.25 \%$ and $0.5 \%$ ethyl acetate in methylene chl orideto elute slowly. The second isomer 10c was the fast moving in this sol vent system, and an early fraction was collected to give $\mathbf{1 0 c}(4 \mathrm{mg})$.

For 9c: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.18-7.22(\mathrm{~m}, 6 \mathrm{H})$, 6.96-6.99 (m, 2H), 6.83-6.87 (m, 2H), 6.37 (dt, 1H, J $=2.8$ $\mathrm{Hz}, 2.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 5.62(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 4.98$ (d, $1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 4.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 3.99(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 7.1 Hz ), 3.80 (ddd, $1 \mathrm{H}, \mathrm{J}=3.7 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, \mathrm{H} 3$ ), 3.00 (dd, $1 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, 15.6 \mathrm{~Hz}$ ), 2.71-2.81 (m, 2H), 2.45 (dd, $1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.88-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.16$ (s, $3 \mathrm{H}), 1.14(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.2,173.3,137.5,136.6,133.8$, 128.8, 128.5, 128.3, 127.3, 127.0, 126.3, 125.9, 60.5, 58.0, 48.8, 46.2, 44.2, 43.2, 42.2, 37.1, 18.3, 16.3, 13.9; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 418.2382$, found 418.2381.

For 10c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20-7.34(\mathrm{~m}, 8 \mathrm{H})$, 7.06 (d, 2H, J = 6.7 Hz), 5.94 (dt, 1H, J $=3.4 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 9.9$ $\mathrm{Hz}), 5.42(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H} \mathrm{J}=$ $14.3 \mathrm{~Hz}), 4.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.5 \mathrm{~Hz}), 3.72-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.37$3.47(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 2.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, 7.2 \mathrm{~Hz}), 0.75(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.46(\mathrm{~s}$,
 132.0, 129.32, 129.29, 128.5, 128.3, 127.8, 126.7, 122.1, 60.4, 58.7, 48.0, 45.0, 42.3, 40.0, 37.8, 35.7, 15.8, 13.9, 9.4; obsd NOE between H 3 a and $\mathrm{H} 5, \mathrm{H} 7 \mathrm{a}$ and H 8 , between Me 4 and $\mathrm{Me5}$, H3 and Me4; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 418.2382$, found 418.2376 .

Diels-Alder Reaction To Make Compounds 9d. Compound $\mathbf{4 g}$ ( $302 \mathrm{mg}, 0.94 \mathrm{mmol}$ ) was used by following the procedure for synthesis of $\mathbf{9 b}$ and $\mathbf{1 1 b}$. The cycl oaddition was complete in $60 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR showed a very clean mixture of three isomeric products in a ratio of 20:2:1. The major isomer could not be isolated by three rounds of slow column chromatography using different solvent systems. A total of 355 mg product ( $91 \%$ from $\mathbf{4 g}$ ) was recovered from column chromatography. The stereochemistry of 9d was assigned using the product mixture.

For 9d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.1$ Hz ), 6.42-6.46 (m, 3H), $5.64(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 9.1$ $\mathrm{Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 4.15(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 4.02$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, 1 \mathrm{H} \mathrm{J}$ $=2.2 \mathrm{~Hz}, 9.8 \mathrm{~Hz}, \mathrm{H} 3), 2.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 2.46-2.62(\mathrm{~m}$, 2H), 2.19-2.34 (m, 1H), 2.12 (dt, 1H, J = $9.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 12.7$ $\mathrm{Hz}, \mathrm{H} 3 \mathrm{a}), 1.27(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.11(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz})$, $0.84(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz})$; obsd NOE $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$ ) between H 3 and $\mathrm{H} 4, \mathrm{H} 3$ and $\mathrm{H} 7 \mathrm{a}, \mathrm{H} 4$ and $\mathrm{H} 5, \mathrm{H} 4$ and H 7 a , weak between H 4 and Me5; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right) 416.2437$, found 416.2455 .

Diels-Alder Reaction To Make Compounds 9e and 10e. Compound 4 h ( $225 \mathrm{mg}, 0.82 \mathrm{mmol}$ ) was used by fol lowing the procedure for synthesis of $\mathbf{9 b}$ and $\mathbf{1 1 b}$. The cycl oaddition completed in 80 h . ${ }^{1} \mathrm{H}$ NMR showed a mixture of three isomeric products in a ratio of 185:50:1. The residue was purified by slow col umn chromatography without air pressure: a mixture of benzene and hexanes (1:1) was used to pack column and load the sample; 3-5\% ethyl acetate in hexanes to elute. Three fractions were collected to give a first fraction of 24 mg (mixture), a second fraction of 203 g (mixture), and a third fraction of 14 mg (pure 9e). The total recovery yield was $80 \%$ based on $\mathbf{2 e}$. The first fraction of 24 mg was again purified using the same solvent system to give the fast moving isomer 10e ( 8 mg ).

For 9e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 6.50(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 9.9$ $\mathrm{Hz}), 5.66(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 10.0 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$=15.4 \mathrm{~Hz}), 4.12(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz})$, 3.37 (dd, 1H, J = $2.2 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, \mathrm{H} 3$ ), 2.68 (dq, 1H, J $=2.7$ $\mathrm{Hz}, 2.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 2.42$ (dd, $1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}$, $12.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.89-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $0.76(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.8,173.9$, 136.6, 134.1, 129.0, 128.6, 127.6, 127.3, 61.9, 60.6, 46.7, 46.4, 44.3, 43.7, 42.9, 27.0, 18.3, 17.4, 16.6, 15.5, 14.1; HRMS cal cd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 370.2382$, found 370.2379 .

For 10e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.29(\mathrm{~s}, 5 \mathrm{H}), 6.03$ (dt, $1 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 9.9 \mathrm{~Hz}$ ), $5.45-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.79$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 4.09-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.5$ Hz ), 3.90-4.01 (m, 1H), $3.14(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 9.2$ $\mathrm{Hz}, \mathrm{H} 7 \mathrm{a}), 3.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{H} 3), 2.69-2.73(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 2.00-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{J}=7.1 \mathrm{~Hz}), 0.75-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 176.2,173.3,136.2,131.9,129.2,128.5,127.8$, 122.7, 62.8, 60.7, 48.6, 44.8, 41.9, 38.7, 36.0, 28.4, 18.2, 16.2, 15.6, 14.1, 9.2; obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) between H 3 and Me4, H3a and H7a, Me4 and Me5, H5 and Me4; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 370.2382$, found 370.2371 .

Diels-Alder Reaction To Make Compounds 9f and 10f. Followed exactly the same procedure to make $\mathbf{9 b}$ and 11b. Proton NMR of the crude but clean Diels-Alder reaction mixture showed two isomeric products 9 fand $\mathbf{1 0 f}$ in a 6:1 ratio, as compared with that of the crude reaction mixture of $\mathbf{9 e}$ and 10e.

Diels-Alder Reaction To Make Compounds $\mathbf{9 g}$ and 11g. Compound 3a ( $110 \mathrm{mg}, 2.11 \mathrm{mmol}$ ) after removal of Boc group was used for reductive alkylation with 2,4-hexadienal by following the procedure to make $\mathbf{2 i}$ and $\mathbf{2 h}$. The reduction was allowed for 6 h after addition of triacetoxyborohydride. ${ }^{1} \mathrm{H}$ NMR of the crude mixture indicated the completion of the cycloaddition of $\mathbf{2 g}$, and showed two diastereomers ( $\mathbf{9 g}: \mathbf{1 1 g}=$ $5: 1)$. The major and more pol ar isomer $9 \mathbf{g}$ was isolated in pure form ( $68 \mathrm{mg}, 66 \%$ ), eluted with $20-30 \%$ ethyl acetate in hexanes from column chromatography: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.16-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.75(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}, 1.7 \mathrm{~Hz})$, 5.56 (dt, $1 \mathrm{H}, \mathrm{J}=9.7 \mathrm{~Hz}, 3.3 \mathrm{~Hz}), 4.18(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$, $3.20-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.03$ (dd, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, \mathrm{H} 1), 2.90$ (dd, $1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, \mathrm{H} 4), 2.74-2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 2.59$ (dd, $1 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{R}_{1}$ ), 2.53 (dd, $1 \mathrm{H}, \mathrm{J}=11.9$ $\left.\mathrm{Hz}, 8.6 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{a}), 1.75(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=$ $11.1 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 173.4,140.0,132.9,129.0$, $128.2,125.8,61.3,60.0,48.2,47.6,45.2,44.6,41.5,33.5,29.6$, 17.8, 14.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 300.1965$, found 300.1953.

Diels-Alder Reaction To Make Compounds 9h and 10h. Compound $\mathbf{2 h}$ ( 101 mg ), after isolation from column chromatography, was immediately dissolved in deuterated chloroform. The cycloaddition was complete in 15 days as monitored by ${ }^{1} \mathrm{H}$ NMR and gave two isomers in a 3:2 ratio. The mixture was eluted first with a mixture of benzene and hexanes ( $1: 1$ ) to remove impurities and then with benzene to give the minor isomer $\mathbf{1 0 h}(32 \mathrm{mg}$ ) and finally with $5 \%$ ethyl acetate in hexanes to give the major isomer $9 \mathrm{~h}(52 \mathrm{mg})$. Total yield was $84 \%$.

For 9h: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.19-7.41(\mathrm{~m}, 5 \mathrm{H})$, 5.71 (dt, 1H , J $=9.6 \mathrm{~Hz}, 2.0 \mathrm{~Hz}$ ), $5.54(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, 3.0$ $\mathrm{Hz}), 4.02-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.4 \mathrm{~Hz}), 3.66(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=13.4 \mathrm{~Hz}), 2.61-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}$, H1), 2.22-2.32 (m, 1H, H7a), 2.16 (dd, 1H, J = $11.5 \mathrm{~Hz}, 9.7$ $\mathrm{Hz}, \mathrm{H} 3 \mathrm{a}), 2.12$ (m, 1H, H5), 1.70 (m, 1H, i sopropyl), 1.28 (t, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.97-1.02(5$ peaks, 9 H$) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.2,141.7,133.6,128.1,128.0$, 127.4, 126.5, 69.8, 63.7, 60.2, 55.5, 48.5, 46.8, 42.2, 37.5, 30.7, 22.4, 18.3, 18.1, 15.8, 14.2; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$ 356.2589 , found 356.2578 ; obsd NOE $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \mathrm{H} 3-$ Me4, H7a-Me4, H3-H5, H5-Me4.

For 10h: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.18-7.34(\mathrm{~m}, 5 \mathrm{H})$, 5.62 (dt, $1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$ ), 5.36 (d, broad, 1 H , J $=9.9$ $\mathrm{Hz}), 3.98-4.24(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.6 \mathrm{~Hz}), 2.94(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=7.9 \mathrm{~Hz}), 2.74-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 2.2$ Hz, H3a), 2.16 (dd, 1H, 12.0 Hz, 8.2 Hz), 1.67-1.80 (m, 1H),
$1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz})$, $0.88(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.84(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 177.3,140.9,130.9,128.2,128.1,126.6$, $125.7,60.5,59.3,58.3,48.2,46.4,39.5,37.1,32.8,18.5,17.9$, 16.5, 14.1, 13.3; obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) H3a-H5, H3aH7a, H3-Me4.

Diels-Alder Reaction To Make Compound 9j. To the primary amine triene $\mathbf{2 i}$ ( $110 \mathrm{mg}, 0.415 \mathrm{mmol}$ ) in THF ( 10 mL ) were added $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL})$ and $\mathrm{PhCOCI}(70 \mathrm{~mL}, 0.60 \mathrm{mmol})$. The mixture was stirred for 0.5 h , quenched with $5 \% \mathrm{NaHCO}_{3}$ $(50 \mathrm{~mL})$, and extracted with ether. The ether layer was dried over $\mathrm{MgSO}_{4}(0.5 \mathrm{~h})$, evaporated, and pumped under high vacuum for 1 h . A part of the residue was dissol ved in $\mathrm{CDCl}_{3}$, and the second part was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and was found complete in 18 h in either $\mathrm{CDCl}_{3}$, or $\mathrm{C}_{6} \mathrm{D}_{6}$ (thetime was counted immediately after the addition of PhCOCl$)$. The ${ }^{1} \mathrm{H}$ NMR showed a mixture of 2 isomers in a ratio of 9:1. Column chromatography using 5-10\% ethyl acetate in hexanes gave the pure major isomer 9j (89 $\mathrm{mg}, 58 \%$ ) and a fraction of mixtures ( $5 \mathrm{mg}, 3 \%$ ). Thetotal yield is $61 \%$. For $9 \mathrm{j}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta 7.64-7.68(\mathrm{~m}, 2 \mathrm{H})$, 7.09-7.16 (m, 3H), 5.42-5.52 (m, 2H), $4.63(\mathrm{~d}$, broad, $1 \mathrm{H}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, \mathrm{H} 1$ ), $3.84-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 9.6$ $\mathrm{Hz}), 2.84(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{~Hz}, 11.6 \mathrm{~Hz}), 2.56-2.68(\mathrm{~m}, 1 \mathrm{H})$, 2.43 (dd, 1H, J = $10.0 \mathrm{~Hz}, 11.8 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.72-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.21(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 176.0, 171.0, 137.0, 134.8, 133.6, 130.3, 128.4, 128.3, 127.9, 127.6, 61.5, 60.5, 54.4, 49.5, 47.4, 42.0, 40.4, 30.7, 19.8, 18.8, 17.4, 16.7, 14.2; obsd NOE ( $\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$ ) H3-Me4.

Compounds 9k. To benzylamine ( $1.60 \mathrm{~mL}, 14.6 \mathrm{mmol}$ ) in methylene chloride ( 20 mL ) were added ethyl 4-bromocrotonate ( $1.0 \mathrm{~mL}, 7.3 \mathrm{mmol}$ ) and 4-(dimethylamino)pyridine ( 200 mg ). The mixture was stirred overnight and separated between ether ( 200 mL ) and water ( 200 mL ). The ether layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography and eluted using 10-20\% ethyl acetate in hexanes to give ethyl 4-benzylami nocrotonate ( 0.81 $\mathrm{g}, 51 \%):{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) $\delta 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.00$ (dt, 1H, J $=15.6 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}$ ), 6.01 (dt, 1 H , J $=15.6$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}), 4.18(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{dd}$, $2 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, 5.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.3$, $146.6,139.7,128.3,128.0,127.0,121.5,60.1,53.1,49.4,14.1$; LC-MS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right) 220$, found 220.

To ethyl 4-benzylaminocrotonate ( $125 \mathrm{mg}, 0.571 \mathrm{mmol}$ ) in THF ( 10 mL ) were added triethylamine ( 0.2 mL ) and 2,4hexadienoyl chloride ( $100 \mathrm{~mL}, \sim 0.75 \mathrm{mmol}$ ). The mixture was stirred for 0.5 h , quenched with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, and extracted with ether ( 50 mL ). The ether layer was dried over $\mathrm{MgSO}_{4}(\sim 0.5 \mathrm{~h})$, evaporated, and pumped under high vacuum for 1 h . A part of the residue was dissolved in $\mathrm{CDCl}_{3}$, and the second part was dissol ved in $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and was found complete in 18 days in either $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$. The ${ }^{1} \mathrm{H}$ NMR showed a mixture of two isomers in a ratio of $6: 1$. Column chromatography using a mixture of methylene chloride and hexanes ( $3: 2$ ) gave the pure major isomer 9 k ( $109 \mathrm{mg}, 61 \%$ ) and a fraction of mixtures ( 11 mg , $6 \%$ ). Thetotal yield is $67 \%$. For $9 k$ : ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ) $\delta 7.21-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}), 5.59(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}$ $=3.1 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 9.9 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 4.37(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 4.08-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.3$ $\mathrm{Hz}, 9.5 \mathrm{~Hz}), 2.98(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}), 2.82-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.69$ (d, broad, $1 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}$ ), $2.27(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$, $11.3 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.93$ $(\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) ;{ }^{33} \mathrm{C}$ NMR (CDCl $\left.3,75 \mathrm{MHz}\right) \delta 172.7,172.6$, 136.7, 133.3, 128.7, 128.1, 127.5, 122.4, 60.4, 49.3, 47.3, 47.0, $46.7,35.8,33.2,16.9,14.2 ; \mathrm{LC}-\mathrm{MS}$ cal cd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 314, found 314.

Diels-Alder Reaction To Make Compounds 17 and 18. Triene 16 ( $96 \mathrm{mg}, 0.33 \mathrm{mmol}$ ) in toluene ( 10 mL ) was heated under nitrogen at reflux for 4 h . Toluene was removed in vacuo. ${ }^{1} \mathrm{H}$ NMR showed the two major isomers in a ratio of $1: 1$. The residue was purified by slow column chromatography using $2-3 \%$ ethyl acetate in methylene chloride to el ute the fast isomer 17 ( 39 mg, pure). A second fraction was then
collected to give a mixture of $\mathbf{1 7}$ and a minor isomer $\mathbf{1 9}$ or $\mathbf{2 0}$ (total 3 mg ). A third fraction eluted with 5\% ethyl acetate in hexanes was obtained in 49 mg , which was a mixture of the major isomer 18 and some starting material 16 (18:16 = 3:2). A fourth fraction eluted with $6 \%$ ethyl acetate in hexanes gave a mixture ( 5 mg , not pure) of 18 containing a second minor isomer 20 or 19. The total yield was 84\% (Diels-Alder products only) or 100\% based on the recovery of 16. For $\mathbf{1 7}$ (structural assignment was from ${ }^{1} \mathrm{H}$ NMR coupling constants): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.15-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9$ $\mathrm{Hz}), 5.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 9.8 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $15.2 \mathrm{~Hz}), 4.10-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.2 \mathrm{~Hz}), 3.25$ (dt, $1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, \mathrm{H} 6$ ), 3.16 (dd, 1 H , J $=3.2$ $\mathrm{Hz}, 10.2 \mathrm{~Hz}, \mathrm{H} 3$ ), $2.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 2.28-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.29(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,75 \mathrm{MHz}\right) \delta 175.4,172.9,136.8,130.4$, $128.6,127.9,127.3,127.1,62.0,60.7,48.5,45.8,43.4,39.4,33.6$ 27.0, 19.7, 15.2, 15.0, 14.3; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 356.2226 , found 356.2240 .

For 18, the fraction 4 containing a minor isomer was used for NMR analyses: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22-7.32$ $(\mathrm{m}, 5 \mathrm{H}), 5.59-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1 \mathrm{~Hz}), 4.12-$ $4.22(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}), 3.06(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.8$ Hz, H3), 2.79 (s, broad, 1H, H6), 2.64 (s, broad, 1H, H3a), 2.492.58 (m, 1H, H7), 2.44 (dd, 1H, J $=6.9 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}), 1.99-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.25(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5$ $\mathrm{Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz})$; obsd NOE ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$ ) H3a-H7a, H6-H7a, H3-H7.

Compounds 23. To amine $\mathbf{1 4}$ ( $224 \mathrm{mg}, 1.14 \mathrm{mmol}$ ) in THF ( 10 mL ), were added ethyl 4-bromocrotonate ( $282 \mu \mathrm{~L}, 1.50$ mmol ) and 4 -(dimethylamino)pyridine ( $70 \mathrm{mg}, 0.57 \mathrm{mmol}$ ). The mixture was stirred overnight and separated between ether $(100 \mathrm{~mL})$ and water ( 100 mL ). The ether layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography and eluted using 10\% ethyl acetate in hexanes to give 21 ( $184 \mathrm{mg}, 52 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.28$ (dd, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, 16.1 \mathrm{~Hz}$ ), 6.96 (dt, $1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}, 5.3$ $\mathrm{Hz}, 15.8 \mathrm{~Hz}), 6.23$ (dd, 1 H , J $=11.0 \mathrm{~Hz}$ ), 5.83-6.01 (m, 3H), $4.16-4.24(\mathrm{~m}, 4 \mathrm{H}), 3.40$ (ddd, 1 H , J $=2.0 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 16.8$ Hz ), 3.25 (ddd, 1H, J $=1.4 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 16.4 \mathrm{~Hz}$ ), 2.91 (dd, 1H,

J $=5.8 \mathrm{~Hz}, 8.3 \mathrm{~Hz}), 1.65-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.32(\mathrm{~m}, 6 \mathrm{H})$, $0.94(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 167.0, 166.4, 146.9, 143.8, 143.6, 130.1, 121.4, 120.7, 65.7, 60.2, 47.8, 32.6, 19.3, 18.2, 14.23, 14.18; LCMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 310$, found 310 .

The second amine triene 21 ( $85 \mathrm{mg}, 0.275 \mathrm{mmol}$ ) in THF ( 5 mL ) was treated by following the procedure to make 9 j . A part of the residue was dissolved in $\mathrm{CDCl}_{3}$, and the second part was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and was found complete in 40 h in either $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ (the time was counted immediately after the addition of PhCOCl ). The ${ }^{1} \mathrm{H}$ NMR of the reaction mixture showed a single isomer. Column chromatography using 5-10\% ethyl acetate in hexanes gave the pure 23 ( $105 \mathrm{mg}, 92 \%$ ): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, 300$ $\mathrm{MHz}) \delta 7.59(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 7.02-7.06(\mathrm{~m}, 3 \mathrm{H}), 5.84(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.61(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, 9.8 \mathrm{~Hz}), 4.28(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 10.2 \mathrm{~Hz}$ ), 4.09 (dd, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 11.1 \mathrm{~Hz}$, H3), 3.70-3.92 (m, 4H), 3.60-3.64 (m, 1H, H6), 2.96-3.05 (m, 2 H ), 2.47 (dq, 1H, J = $6.1 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}$ ), 2.13 (dd, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, \mathrm{H} 7$ ), $2.02(\mathrm{t}$, broad, $1 \mathrm{H}, \mathrm{J}=$ $12.0 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 0.85-0.99(\mathrm{~m}, 9 \mathrm{H}), 0.78(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 171.8,171.5,170.6,136.8,131.1$, $130.3,128.1,127.8,124.8,63.7,61.1,60.6,55.4,44.7,44.5,43.8$, 39.9, 28.4, 19.4, 16.1, 14.1, 13.8; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{5}$ $\left(\mathrm{MH}^{+}\right) 414.2281$, found 356.2263 .

Acknowledgment. We thank Drs. G. H. Kuo and P. Connolly for helpful discussions, M. Evangelisto for purification of compound 10b, and W. J. J ones for HRMS. Elemental analysis was performed by Quantitative Technologies, Inc., NJ .

Supporting Information Available: The compound purity is exemplified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the DielsAlder reaction products of trienes $\mathbf{2 a - f}$ and 22. Calculated structures (Cartesian coordinates) and energies of all ground and transition structures are given. This material is available free of charge via the Internet at http://pubs.acs.org.

[^8]
[^0]:    (1) For the syntheses of other hydroisoquinone and hydroisoindole derivatives via Diels-Alder reactions, see: (a) Gutierrez, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. 1989, 54, 4335. (b) Moriwake, T.; Hamano, S.; Saito, S.; Torii, S. J. Org. Chem. 1989, 54, 4114. (c) Martin, S.; Williamson, S. A.; Gist, R. P.; Smith, K. M. J. Org. Chem. 1983, 48, 5170. (d) Guy, A.; Lemaire, M.; Negre, M.; Guette, J. P. Tetrahedron Lett. 1985, 26, 3575. (e) Takeuchi, H.; Fujimoto, T.; Hoshino, K.; Motoyoshiya, J.; Kakehi, A.; Yamamoto, I. J. Org. Chem. 1998, 63, 7172.
    (2) For examples of the discussion on 1,3-allylic strains in DielsAlder reactions, see: (a) Crisp, G. T.; Gebauer, M. G. J. Org. Chem. 1996, 61, 8425. (b) Roush, W. R.; K oyama, K.; Curtin, M. L.; M oriarty, K. J.J.Am. Chem. Soc. 1996, 118, 7502. (c) Reetz, M. T.; K ayser, F.; Harms, K. Tetrahedron Lett. 1992, 33, 3453.

[^1]:    (5) Brown, F. K.; Singh, U. C.; Kollman, P. A.; Raimondi, L.; Houk, K. N.; Bock, C. W. J . Org. Chem. 1992, 57, 4862;'Raimondi, L.;'Brown, F. K.; Gonzalez, J .; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 4796.
    (6) Supporting Information Table 3.

[^2]:    (7) Atkinson, R. S. Stereoselective Synthesis; J ohn Wiley \& Sons: Chichester, 1995; pp 156-180.
    (8) Supporting Information Tables 2 and 4.

[^3]:    (9) Supporting Information Table 4.

[^4]:    (10) Fleming, I. Frontier Orbitals and Organic Chemical Reactions; J ohn Wiley \& Sons: London, 1976.
    (11) Overman, L. E.; Taylor, G. F.; Houk, K. N.; Domelsmith, L. N. J. Am. Chem. Soc. 1978, 100, 3182. (b) Yedidia, V.; Leznoff, C. C. Can. J. Chem. 1980, 58, 1144.

[^5]:    (12) Boeckman, R. K., J r.; Demko, D. M. J . Org. Chem. 1982, 47, 1789.

[^6]:    (13) Spino, C.; Crawford, J.; Cui, Y.; Gugelchuk, M. J . Chem. Soc., Perkin Trans. 2 1998, 1499 and references therein.
    (14) Supporting Information Table 5.
    (15) Yoo, X.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 2877. Wiest, O.; Houk, K. N. Top. Curr. Chem. 1996, 183 (Density Functional Theory IV), 1.
    (16) Gaussian 94 and 98: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; J ohnson, B. G.; Robb, M. A.; Cheeseman, J. R.; K eith, T.; Petersson, G. Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J . V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J .; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh, PA, 1995, 1998.
    (17) SPARTAN (v. 5.0), Wavefunction, Inc., Irvine, CA.
    (18) CAChe Scientific, Oxford Molecular, Beaverton, OR.

[^7]:    (20) Szardemings, A. K.; Burkoth, T. S.; Look, G. C.; Campbell, D. A. J. Org. Chem. 1996, 61, 6720.

[^8]:    J O990459F

